Home-  Sailboat-  Submarines-  ROVs-  Metal Working-  Other Stuff -  About Us

Build Log
Origami Hull
  Paul's 65ft Origami
  Modeling
  Steel vs Aluminum
  Getting Steel
  Lofting
  Welding
  Cutting Darts
  Folding the Hull
  Bow and Transom
  Decks
  Bulkheads
  Companionways
Propulsion
  Junk Sails
  Background Info
  Diesel Engine
  Controllable Pitch
  Other Propellers
  Diesel/Hybrid/Elec
Pilot House
Canvas Work
Gantry and Hoist
Anchors
Winches
Block & Tackle
Rigging
Keels
Skeg, Rudder & Helm
Deck Crane
Hydraulics
Sand Blasting
Painting
Electrical
Insulation
Refrigeration
Hatches / Portlights
Tender
Launch
Rules of Thumb
Links

 

Skeg, Rudder, and Helm

 

 

 

 

 

 

 

 

 

Rudder Steering Gearbox


Steering gear box, drive shaft,
and steering buster pump
salvaged from a school bus. 

While cutting our school bus apart I noticed that huge steering gear box with it's 2" splined steel shaft. If it can steer a 7 ton bus on land, it shouldn't it be able to steer a 40 ton boat on water? Unfortunately No!  It would be great for a 6 ton boat with a 2" rudder post, but when we ran our numbers through the calculations in Dave Gerr's "Boat Mechanical Systems Handbook"  our 40 ton, 65' water line boat with a 23 square foot rudder, needs rudder post in excess of 4 1/2 inch diameter bar that can take over 7 tons of force and 21,000 foot pounds. 

If you get at all nervous about boat building decisions then looking at rudders will likely make your head explode.  The real killer is they are not like anchors.  You can trade this part out easily.  My only advice is keep in mind how you are going to use your boat. 

For us, Seeker is a work boat.  Towing, hauling cargo, maneuverability, and ruggedness are top of the list.  Meaning that speed under sail is going to take a hit.

 


www.rudderpower.com

www.rudderpower.com

One  answer to tight turns is the articulating rudder.  The make for impressive turns but the down side is the additional moving parts and the maintenance that come with that.  Their other down side is that they work very poorly in reverse.

 

 

 

 

 

 

 


Kort Nozzle

Rice Nozzle

The next big idea was a Kort nozzle.   That idea quickly was put aside because we're building a sailboat, not a tug boat.  ...but it kept coming back.  Generally if you have never seen someone else do it then it's a bad idea, but this one persisted.   But not as a Kort Nozzle or a Rich Nozzle but as a simple propeller shroud.  Kort and Rice Nozzle are both have flared openings so my thought is that they will have considerable more drag than just a shroud which is nothing more than a pipe. 

 

 


Steerable Nozzle

Steerable Ducted Propeller

Ducted propellers, even simple pipe like propeller shrouds become much more interesting when they are steerable.  True, we will not realize the 15 to 20% increased thrust offered by a nozzle, but even a simple duct can boast a 10% increase, and there are plenty of additional advantages.

*    10% more thrust
*    Improved towing capacity.
*    60 to 70% tighter turning radius
*    Better fuel efficiency
*    Protection for the blades
*    Less ingestion of bottom debris    when working in shallow water
*    Improved reverse thrust

 


Fixed Propeller Shroud

On second thought, Kay and I decided we wanted the propeller shroud fixed to the skeg and a Fish Tail rudder foil trailing behind. The idea is to increase the reliability. The shroud to blade tip clearance is only 3/16". If the cup bearing beneath the rudder were to wear just 3/16" then the blades would have started striking the shroud. With them separate if we have damage to the shroud, we can cut it way, replace or repair the blades if needed and be on our way. If it's par of the rudder, we be left with a very weak rudder once the shroud was removed.  The dead wood or shoe extended out under the rudder is being debated.  If it takes a hard it, it will bend and jam the rudder, but then it might save the rudder's ass too.

 

 


Active Rudder

One other option, just because it's so unique, is the "active rudder".  A hydraulic motor, controllable pitch propeller and Kort nozzle are build into the rudder which can swing 65 degrees to both sides giving the vessel great maneuverability and station keeping ability. 

This example is on the Canadian Cost Guard vessel - TANU

 

 

 

 

Fishtail Rudder

 

 

 

 

 

 

 

 

 

 

Fishtail Rudder


Fishtail rudder.

We selected to use a "fishtail rudder" straight out of Dave Gerr's Boat Mechanical Systems Handbook. There are two advantages we like about the design. First is maneuverability.  Most rudders, stall and become useless once they are turned more than 33 degrees to either side.  But the fishtail rudder can be turned 45 degrees before it stalls.  Secondly, as a workboat we run the risk of bumping into things like a rocks.  The large forward width of the fishtail rudder allows us to use a very strong 6 inch diameter XXHW rudder post.  While we may damage the rudder's surface, we will not likely harm the rudder post which will make repairs much easier. 
Specs:   Rudder Tube: 10.75" OD  x 0.5 Wall     Rudder Post:  6" XXH 6.625OD, 4.897ID, .864Wall XXHY 53.21 llbs/ft
 


Using jacks to pull 3/16" steel skin to the frames of the fishtail rudder.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Rudder Collar

Mermaid - Pad Eye

 

We cast a rudder collar that clamps to the rudder post and seats against the rudder tube mounted into hull, preventing the rudder from being pushed up into the hull.  When the rudder need to be removed the collar is first removed, then the flange bolts are removed and the rudder raised up 4 inches until the pintle clears the rudder cup and the rudder is shifted sideways, clear of the cup.

The three, 3/8" thick pad eyes on the transom and two on the top plate of the rudder allow for the 1000 pound rudder to be easily managed with 3 leaver chain hoist.  When in the water the hollow rudder displaces 600 pounds dropping its weight to 400 pounds.

The void inside the rudder is air tight so no rusting of the inside will stop once the available oxygen is depleted.

 

 

 

 

 

Steering Systems


www.edsonmarine.com

Chain and Cable

The old school approach of chain an cable is an interesting approach, because the parts can be built from scratch.  The down side is routing the cables, but in our case that will be easy to do.  And any power assist or autopilot system will have to actually turn the helm wheel.  But while that is a little dangerous, it is a great visual feed back for the auto pilot.

We got a spec of a chain and cable system from Edson Marine.  Edson_Marine_Helm_Specification It calls for a 2:1 reduction gear on a 48" helm with 9.9 turns for a 90 degree swing.  The sprocket diameter is 2.43" and the quadrant radius is 24".  And the force on the wheel is 33 pounds cursing and 44 pounds surfing.

The Edson_Chain_and_Wire_Steering_Systems and Edson_Chain_and_Wire_Grear_Reduction documents contain information to design your own system. 


 


 

 

 


Hydraulic

We've decided to use a hydraulic system over a chain and cable or worm gear because we have other hydraulic equipment, the forces from the rudder are focused at the cylinders as opposed to over a steel cable as with chain and cable systems, a worm gear would be difficult and expensive to locate and replace, a  hydraulic helm pump can have a variable displacement making it easy to adjust the number of turns from stop to stop, and when the engine is running the hydraulic system can be powered from the engine for faster rudder control using a jog leaver if desired.

Balanced vs Unbalanced Cylinders:  Most hydraulics for rudders use balanced cylinders, where the rod protrudes through the backend of the cylinder so that the same amount of fluid is needed to push the rudder in both directions.

 

 

 

 

 

 


 

 

 


Unbalanced Cylinders used in a pair will balance the steering.

But unbalanced cylinders are more common and if you simply use two unbalanced cylinders you get the same effect and you can plumb around one failed cylinder and still have use of your hydraulic steering.

 

 

 

 

 

 

 

 

The rudder is designed to take over 21,000 foot pounds.


Pumps:

Kobelt Helm Pump Model 7012  Variable Displacement 4 - 12 cu . in  1000 psi
$2000 from www.seatechmarineproducts.com

SeaStar Capilano 1350 / Teleflex-HH0426  8 Cubic in. 1.25in. Straight Shaft  $2500 from www.seatechmarineproducts.com 

Teleflex HH5275,  Model 1275V,  2.7 - 5.4 Cu. In.


Cylinders:

www.surpluscenter.com/Hydraulics/Hydraulic-Cylinders/Double-Acting-Hydraulic-Cylinders/3x16x1-50-DA-HYD-CYL-LION-30LH16-150-3000-PSI-9-8262-16-S.axd
3 x 16 x 1.5  @ 1000 psi  = 7069 lb push and  5301 lb pull or 12,370 combined. 16,400 ft pounds
pi * (3/2)^2 * 16 * 2 = 226 cu in  
Kobelt Helm Pump Model 7012   226 / 12 = 18.8 turns @ 45 degree or 14.6 @ 35 degrees.

 



Unbalanced Model 7087 - Rudder Angle 45;  22,400 ft/lb;  Bore 3 1/2 x 16" Stroke 269 cu in
pi * (3.5/2)^2 * 16 * 2 = 307 cu in  
Turns with Teleflex HH5275,  Model 1275V,  2.7 - 5.4 Cu. In.  269/ 5.4 cu in = 49.8 turns
Turns with Pump 7012: 269 / 12 = 22.4   35 degee = 17

SeaStar
www.seastarsolutions.com/products/hydraulic-new/inboard-new/hynautic-new/
14.2 turns, Hynautic  Pump H-41 5.50 cu.in., 950 psi   Cylinders: Two: K-8, replaced by HC5806,  9" stroke, 2.5" bore, 10,308lbs, 5510 ft/lbs, 74.33 cu.in. displacement

 

Resources

www.baumhydraulics.com/calculators/cyl_calc.htm
www.kobelt.com
www.rudderpower.com
www.bayviewengineeringind.com

Rules of Thumb

For manual hydraulic systems, under normal conditions, the load on the steering wheel rim should not exceed 36 ft. lbs. (16 kg), and generally the hydraulic system pressure should not exceed 650 psi (45 bar) for small helm pumps or 400 psi (30 bar) for larger versions.  --Kobelt

Various Rudder Area Size Calculations

A rudder area of between 8 and 10 per cent of the total lateral plane or underwater profile is the desirable size for a sailboat. Seeker is about 304 sq feet * .08 = 24.6 sq ft  Down to 6% will do for rudders with high aspect ratios.  (Tall)

With a skeg in front of a rudder, up to 12% of the rudder can be considered to be on the skeg.  Unless the skeg is 80% of the rudder area and then it no longer counts because it acts more like a long keel.

The submerged portion of the rudder is typically 1% to as much as 2% of the sail area.
Seeker has 2196 sq ft of sail, which would be 22 to 44 sq ft of rudder.  Seeker's rudder is 20 sq ft.

Displacement Boat Rudder Area = .03 to .04 * Waterline Length * Draft Including Keel:  Seeker is 12 to 16

Traditional Full Long Keel = .068 * Waterline Length * Draft Including Keel: Seeker: 26.52